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a b s t r a c t

The determination of the natural frequencies and mode shapes of structures requires an

analytical, semi-analytical or numerical method. This paper presents a new semi-

analytical approach to determine natural frequencies and mode shapes of a multi-span,

continuous, orthotropic bridge deck. The suggested approach is based on the modal

method, which differs from other approaches in its decomposition of the admissible

functions defining the mode shapes. Implementation of this technique is simple and

enables avoidance of cumbersome mathematical calculations. In this paper, application

of the semi-analytic approach to a three-span, orthotropic roadway bridge deck is

compared in the first 16 modes of previously published fully analytical results and to a

finite element method analysis. The simplified implementation matches within 2

percent in all cases, with the additional benefit of including intermodal coupling. The

approach can be extended to similar bridges with more than three spans.

& 2009 Elsevier Ltd. All rights reserved.
1. Introduction

In bridge design, dynamic analysis offers a more complicated but potentially more critical assessment. As a part of this,
the analysis of free vibrations of roadway bridge decks is the first essential step to study forced vibrations due to passing
vehicles. Such analysis requires determination of the natural frequencies and mode shapes. In general, roadway bridge
decks have a rectangular form, which may be continuous over a number of intermediate line supports in the longitudinal
direction and free in the transverse direction. In previous research, bridge decks have been modeled as thin, rectangular,
isotropic or orthotropic plates [1,2] to consider the dynamic effects of roadway traffic on bridges and the resulting dynamic
amplification factors from which major static effects are used to check limiting states.

Several methods and techniques have been developed previously to determine natural frequencies and natural mode
shapes of multi-span plates. Among the related studies, analytical methods represent a considerable portion. For example,
Veletsos and Newmark [3] used Holzer’s method for torsional vibration of shafts to determine natural frequencies of plates
simply supported along the continuous edges. Dickinson and Warburton [4] utilized Bolotin’s edge-effect method [5,6] for
the study of two-span plates involving clamped, simply supported end, free edges. The modified Bolotin method, developed
by Vijayakumar [7] and Elishakoff [8], was applied by Elishakoff and Sternberg [9] to determine eigenfrequencies of
rectangular plates, with continuous over line supports with an arbitrary number of equal spans in one direction. More
recently, the receptance method was exploited by Azimit et al. [10] in a similar application. Gorman and Garibaldi [11]
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Nomenclature

aij modal amplitudes
b width of the bridge deck
Dx, Dy flexural rigidities for the x- and y-directions,

respectively
Dxy flexural rigidity for the x–y plane
Ex, Ey Young’s moduli for the x- and y-directions,

respectively
Gxy shear modulus in bending for the x–y plane
h thickness of the bridge deck
hij(y) eigenfunctions of single span Euler–Bernoulli

beam satisfying the boundary conditions of a
plate for the y-direction

H equivalent rigidity of the bridge deck
ki, k1i eigenvalues
l length of the bridge deck
li length of the ith span of the bridge deck

t time
w(x, y, t) vertical displacement of the bridge deck
x, y, z axis of the reference system

nxy, nyx Poisson’s ratios
r mass density of the bridge deck
fij(x,y) mode shapes of multi-span continuous bridge-

deck
ji(x) eigenfunctions of multi-span continuous Eu-

ler–Bernoulli beam
jri(xr) ith mode shape in the rth span of the bridge

deck for the x-direction
cj(y) eigenfunctions of single span Euler–Bernoulli

beam
oij natural frequency of multi-span continuous

bridge deck
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applied the superposition method and the span-by-span approach to obtain an accurate analytical solution for free
vibration of multi-span bridge decks. Zhou [12], Zhu and Law [13], and Marchesiello et al. [14] employed eigenfunctions of
continuous multi-span beam in one direction and single-span beam in the other direction into the Rayleigh–Ritz method
for determination of eigenfrequencies of a continuous multi-span rectangular bridge deck.

These analytical and semi-analytical methods are precise, but they are limited to geometrically simple plates. Therefore,
numerical methods may be considered to be more powerful, alternative tools for analysis of plates with complex
geometries. Among these methods, the finite element method is dominant [15–18]. Arguably, problems having regular
geometry can be solved more efficiently by approximate techniques. Cheung et al. [19] used the finite-strip method, while
Wu and Cheung [20] devised a method of finite elements in conjunction with Bolotin’s method to analyze continuous
plates in two directions. The transfer matrix method was developed by Mercer and Seavey [21] for analysis of such plates.
Plates with mixed boundary conditions, however, require other techniques. For example, Keer and Sthal [22] used Fredholm
integral equations to calculate the eigenfrequencies of a simply supported plate partially clamped on the edge, while the
differential quadrature method proposed by Bellman et al. [23] was adopted by Laura and Gutierez [24] and Lu et al. [25].

This paper presents a new, semi-analytical approach to determine the natural frequencies and the natural mode shapes
of a multi-span continuous roadway bridge deck. The bridge deck is modeled as a three-span, continuous, orthotropic,
rectangular plate with intermediate line rigid supports. The suggested approach is based on the modal method, which
differs from other approaches in the decomposition of the admissible functions defining the mode shapes. The
implementation of this method is simple and generates very satisfactory results in comparison with previously published
values.
2. Natural frequencies and mode shapes of a bridge deck

The bridge deck is modeled as a continuous, rectangular, orthotropic plate of length l, width b, uniform thickness h and
mass density r as shown in Fig. 1. The bridge deck is simply supported at two ends (x ¼ 0, l), and the other edges are free
(y ¼ 0, b). A linear elastic behavior is assumed, and the effects of shear deformation and rotary inertia are neglected. The
intermediate line supports of the bridge are linear, rigid, and orthogonal to the free edges of the plate. Since the horizontal
dimension of the bridge deck is much larger than its thickness, a thin plate assumption is used. With these assumptions,
x

y
z

l1 l2 l3
l

hb

o

Fig. 1. Model of the continuous three span bridge deck.
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the governing differential equation of free vibration of the orthotropic plate is given by

rh
q2w

qt2
þ Dx

q4w

qx4
þ 2H

q4w

qx2 qy2
þ Dy

q4w

qy4
¼ 0 (1)

where w(x,y,t) is the vertical displacement of the plate in z-direction, Dx ¼ Exh3=12ð1� nxynyxÞ, Dy ¼ Eyh3=12ð1� nxynyxÞ,
Dxy ¼ Gxyh3=12, and H ¼ nxyDy þ 2Dxy are flexural rigidities, in which Ex and Ey are Young’s moduli in the x- and
y-directions respectively, Gxy is the shear modulus, nxy and nyx are Poisson’s ratios. Using modal superposition, the vertical
displacement for free vibration of the plate [3] may be expressed as

wðx; y; tÞ ¼
X1
i¼1

X1
j¼1

aijfijðx; yÞe
Joijt (2)

where fij(x,y) are the mode shapes of a multi-span continuous bridge deck corresponding to the ith mode in the x-direction
and jth mode in the y-direction with associated natural frequency oij, and aij is the unknown modal amplitude, while t is
time, and J ¼

ffiffiffiffiffiffiffi
�1
p

.
Substituting expression (2) into Eq. (1) generates Eq. (3) in the space variables x, y:

Dx
q4fij

qx4
þ 2H

q4fij

qx2qy2
þ Dy

q4fij

qy4
� rho2

ijfij ¼ 0 (3)

Such an approach (e.g. [11]) uses a set of functions that constitute a complete set (in the sense functional analysis
definition). This ensures the uniform convergence of the solutions to the classic (exact) ones, with the advantage of the
approach being in the general fashion of the admissible functions.

Furthermore, several authors [12–14] use the Rayleigh–Ritz method to determine the natural frequencies of the
vibration of the bridge deck. These authors decompose fijðx; yÞ as the product of two admissible functions: jiðxÞ and cjðyÞ,
which are eigenfunctions of the continuous multi-span Euler–Bernoulli beam and eigenfunctions of the single-span,
Euler–Bernoulli beam, thereby, satisfying the boundary conditions in the x- and y-directions, respectively, and also the
boundary and continuity conditions at the rigid line supports. This decomposition neglects the intermodal coupling.
Moreover, several integrals must be evaluated.

To take account of the intermodal coupling, one considers jiðxÞ as the mode shapes of a continuous, Euler–Bernoulli
beam in the x-direction. While in the y-direction, mode shapes are presented by function hijðyÞ, thus satisfying the
boundary conditions of a plate at the free edges y ¼ 0 and b of the bridge deck. This technique is simple and makes it
possible to avoid cumbersome mathematical calculation. This decomposition may be expressed as

fijðx; yÞ ¼ jiðxÞhijðyÞ (4)

The mode shapes jiðxÞ of a continuous three-span Euler–Bernoulli beam in x-direction are shown in Eq. (5) and further
detailed in Appendix A:

jiðxÞ ¼

A1i sinðkixÞ �
sinðkil1Þ

shðkil1Þ
shðkixÞ

� �
for 0 � x � l1

A2i sinðkiðx� l1ÞÞ �
sinðkil2Þ

shðkil2Þ
shðkiðx� l1ÞÞ

� �
þ B2iðcosðkiðx� l1ÞÞ

�chðkiðx� l1ÞÞ þ
chðkil2Þ � cosðkil2Þ

shðkil2Þ
shðkiðx� l1ÞÞÞ for l1 � x � l1 þ l2

A3i sinðkiðl� xÞÞ �
sinðkil3Þ

shðkil3Þ
shðkiðl� xÞÞ

� �
for l1 þ l2 � x � l

8>>>>>>>>>>>>><
>>>>>>>>>>>>>:

(5)

The differential Eq. (3) must be satisfied for all values of x, but determining its resolution for every value of x is practically
impossible to achieve. For this reason, it is proposed to substitute expression (4) into Eq. (3), then multiply it by ji xð Þ and
integrate the equation over the bridge length. From this one obtains

Dy
d4hij

dy4

Z l

0
j2

i dxþ 2H
d2hij

dy2

Z l

0
j00i ji dxþ ðDxk4

i � rho2
ijÞhij

Z l

0
j2

i dx ¼ 0 (6)

Dividing Eq. (6) by Dy
R l

0 j
2
i dx, one obtains

d4hij

dy4
þ

2Hk2
1i

Dy

d2hij

dy2
þ

Dxk4
i � rho2

ij

Dy

0
@

1
Ahij ¼ 0 (7)

with

k1i ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiZ l

0
f00i ji dx

,Z l

0
j2

i
dx

vuut (8)
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Integrals that appear in expression (8) of the new frequency parameter k1i are simple to calculate. Hence, the solution of
Eq. (7) is given by the general form in

hijðyÞ ¼ Aije
sijy (9)

Substituting expression (9) into Eq. (7), one obtains

s4
ij �

2Hk2
1i

Dy
s2

ij þ
Dxk4

i � rho2
ij

Dy
¼ 0 (10)

Solutions of Eq. (10) are as follows:

s1ij ¼ �
1ffiffiffiffiffiffi
Dy

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Hk2

1i þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
H2k4

1i � DyðDxk4
i � m̄o2

ij
Þ

rs
¼ �r1ij (11a)

s2ij ¼ �J
1ffiffiffiffiffiffi
Dy

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Hk2

1i �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
H2k4

1i � DyðDxk4
i � m̄o2

ij
Þ

rs
¼ �Jr2ij (11b)

Note that the parameters r1ij and r2ij are not independent but are related by the pulsations oij. In order to reduce the
writing, one omits the ij indices in r1ij and r2ij. Substituting solutions (11a and 11b) into expression (9), one obtains

hijðyÞ ¼ A1ije
r1y þ A2ije

�r1y þ A3ije
Jr2y þ A4ije

�Jr2y (12)

where A1ij, A2ij, A3ij and A4ij are constants of integrations. The exponential functions can be expressed by trigonometric and
hyperbolic functions. The Eq. (12) can be written as

hijðyÞ ¼ Cij sinðr2yÞ þ Dij cosðr2yÞ þ Eijshðr1yÞ þ Fijchðr1yÞ (13)

where Cij, Dij, Eij and Fij are new constants of integration. They are determined by the application of the boundary conditions
at the free edges of the bridge: y ¼ 0 and b. At these edges, the bending moment and the shear force are zero, thus

Dy
q2w

qy2
ðx;0; tÞ þ nyxDx

q2w

qx2
ðx;0; tÞ ¼ 0

Dy
q3w

qy3
ðx;0; tÞ þ ðnyxDx þ 4DxyÞ

q3w

qx2 qy
ðx;0; tÞ ¼ 0

Dy
q2w

qy2
ðx; b; tÞ þ nyxDx

q2w

qx2
ðx; b; tÞ ¼ 0

Dy
q3w

qy3
ðx; b; tÞ þ ðnyxDx þ 4DxyÞ

q3w

qx2 qy
ðx;b; tÞ ¼ 0 (14)

Taking account of the expressions (2) and (4), the boundary conditions for Eq. (14) become:

Dy
d2hij

dy2
ð0Þ � nyxDxk2

1ihijð0Þ ¼ 0

Dy
d3hij

dy3
ð0Þ � ðnyxDx þ 4DxyÞk

2
1i

dhij

dy
ð0Þ ¼ 0

Dy
d2hij

dy2
ðbÞ � nyxDxk2

1ihijðbÞ ¼ 0

Dy
d3hij

dy3
ðbÞ � ðnyxDx þ 4DxyÞk

2
1i

dhij

dy
ðbÞ ¼ 0 (15)

The application of the boundary conditions from Eq. (15) in Eq. (13), gives the following system (omitting the indices ij in
r1ij, r2ij, aij, yij, gij, and wij) as shown in

0 a 0 y
g 0 w 0

a sinðr2bÞ a cosðr2bÞ yshðr1bÞ ychðr1bÞ

g cosðr2bÞ �g sinðr2bÞ wchðr1bÞ wshðr1bÞ

2
66664

3
77775

Cij

Dij

Eij

Fij

8>>>><
>>>>:

9>>>>=
>>>>;
¼

0

0

0

0

8>>><
>>>:

9>>>=
>>>;

(16)
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with

a ¼ �Dyr2
2 � nyxDxk2

1i (17a)

y ¼ Dyr2
1 � nyxDxk2

1i (17b)

g ¼ �Dyr3
2 � ðnyxDx þ 4DxyÞr2k2

1i (17c)

w ¼ Dyr3
1 � ðnyxDx þ 4DxyÞr1k2

1i (17d)

For non-trivial solutions of the system (16), the frequency equation is

2aygwðcosðr2bÞchðr1bÞ � 1Þ þ ðy2g2 � a2w2Þ sinðr2bÞshðr1bÞ ¼ 0 (18)

The parameters r1 or r2 can be solved from Eq. (18), while the natural frequency oij can be obtained from expressions (11a)
and (11b).

To determine the natural mode shapes of the bridge, one simplifies the system (16) by the standardization of the first
component Cij of the unknown vector with 1, thereby reducing the problem to four equations with three unknown.
One then chooses three equations among the four available:

a 0 y
0 w 0

a cosðr2bÞ yshðr1bÞ ychðr1bÞ

2
64

3
75

Dij

Eij

Fij

8><
>:

9>=
>;þ

0

g
a sinðr2bÞ

8><
>:

9>=
>; ¼

0

0

0

8><
>:

9>=
>; (19)

From which one obtains the expressions for the constants Dij, Eij, and Fij:

Dij ¼ a sinðr2bÞ �
gy
w shðr1bÞ

� ��
ðachðr1bÞ � a cosðr2bÞÞ (20a)

Eij ¼ �
g
w (20b)

Fij ¼ �a sinðr2bÞ þ
gy
w

shðr1bÞ

� ��
ðychðr1bÞ � y cosðr2bÞÞ (20c)

Finally, the mode shapes of the multi-span bridge deck are represented by

fijðx; yÞ ¼ jiðxÞfsinðr2yÞ þ Dij cosðr2yÞ þ Eijshðr1yÞ þ Fijchðr1yÞg (21)

3. Numerical example

In order to verify the suggested approach with other approaches, a numerical example was prepared. The bridge deck
was modeled as an orthotropic, three-span plate. The following features of bridge deck were as reported elsewhere
Table 1
Mesh density convergence.

Mode shapes Order of frequencies Natural frequencies (Hz)

156�20 312�40 468�60

1 1.1 4.13 4.13 4.13

2 1.2 5.45 5.45 5.45

3 2.1 6.30 6.30 6.30

4 2.2 7.59 7.59 7.59

5 3.1 7.76 7.76 7.76

6 3.2 8.79 8.79 8.79

7 1.3 9.05 9.01 9.00

8 2.3 11.29 11.24 11.23

9 3.3 12.06 12.02 12.01

10 1.4 15.09 14.91 14.88

11 4.1 15.80 15.80 15.80

12 4.2 17.18 17.17 17.17

13 2.4 17.52 17.30 17.26

14 3.4 17.98 17.77 17.73

15 4.3 21.28 21.19 21.17

16 5.1 22.28 22.28 22.28
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[13,26]: l ¼ 78 m, l1 ¼ l3 ¼ 24 m, l2 ¼ 30 m, b ¼ 13.715 m, h ¼ 0.21157 m, r ¼ 3265.295 kg m�3, Dx ¼ 2.415�109 N m,
Dy ¼ 2.1807�107 N m, Dxy ¼ 1.1424�108 N m, nxy ¼ 0.3, Ex ¼ 3.0576�1012 N m�2, Ey ¼ 2.7607�1010 N m�2, Gxy ¼

1.4475�1011 N m�2.
To calculate the natural frequencies of the orthotropic bridge deck, first ki values were calculated (see appendix) and the

k1i values using expression (8). Subsequently, Mathematica software was used to determine the roots r1ij or r2ij of the
frequency Eq. (18). Finally, natural frequencies of the bridge oij were calculated by expressions (11a) and (11b). By
comparing the natural frequencies obtained by the newly devised approach with those previously published by Zhu and
Law [13], and those calculated with a finite element method using ANSYS software v.10, the method was verified.

To obtain the ANSYS results, firstly all material properties of orthotropic three span bridge deck herein reported were
numerically modeled. The bridge deck consisted of a fine mesh 468�60 resulting in 28 080 elements of type shell63
(6 DOF per node). The decision was made to calculate 16 modes. Convergence according to the mesh density is presented in
Table 1.

Table 2 summarizes the differences between the values for the first 16 natural frequencies of the bridge. Excellent
agreement is observed for all the frequencies with the ANSYS results (errors not exceeding 2 percent). This is mainly due to
Table 2
Comparison of natural frequencies of the bridge deck.

Mode

shapes

Order of

frequencies

Natural frequencies (Hz) Error (%)

Proposed

approach

ANSYS Zhu and Law

[13]

Proposed approach/

ANSYS

Proposed approach/Zhu

and Law [13]

1 1.1 4.13 4.13 4.13 0.00 0.00

2 1.2 5.45 5.45 4.70 0.00 13.76

3 2.1 6.30 6.30 6.31 0.00 �0.16

4 2.2 7.59 7.59 6.86 0.00 9.62

5 3.1 7.75 7.76 7.76 �0.13 �0.13

6 3.2 8.77 8.79 8.20 �0.23 6.50

7 1.3 9.08 9.00 – 0.88 –

8 2.3 11.26 11.23 – 0.27 –

9 3.3 11.97 12.01 – �0.33 –

10 1.4 15.07 14.88 – 1.26 –

11 4.1 15.79 15.80 15.81 �0.06 �0.13

12 4.2 17.16 17.17 16.39 �0.06 4.49

13 2.4 17.33 17.26 – 0.40 –

14 3.4 17.65 17.73 – �0.45 –

15 4.3 21.19 21.17 – 0.09 –

16 5.1 22.27 22.28 22.29 �0.04 �0.09

Fig. 2. The first six mode shapes of the three span, bridge deck obtained through the proposed approach. Modes: (a) 1, f1 ¼ 4.13 Hz; (b) 2, f2 ¼ 5.45 Hz;

(c) 3, f3 ¼ 6.30 Hz; (d) 4, f4 ¼ 7.59 Hz; (e) 5, f5 ¼ 7.75 Hz; and (f) 6, f6 ¼ 8.77 Hz.
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the weak influence of the side effects of shear deformation and rotary inertia, since the two ratios of span width and length
of the bridge deck with respect to its height are very significant (65 and 114, respectively). According to Table 2, one sees
that the natural frequencies of flexural mode shapes from Zhu and Law [13] are very close to the semi-analytically derived
frequencies (error not exceeding 0.2 percent). This error becomes significant for the natural frequencies of torsional mode
shapes. Zhu and Law [13] decomposed fijðx; yÞ as the product of two admissible functions jiðxÞ and cjðyÞ, which are
eigenfunctions of the continuous multi-span, simply supported beam, and eigenfunctions of a single-span, free beam,
Fig. 3. The first six mode shapes of the three span, bridge deck obtained through ANSYS. Modes: (a) 1, f1 ¼ 4.13 Hz; (b) 2, f2 ¼ 5.45 Hz; (c) 3, f3 ¼ 6.30 Hz;

(d) 4, f4 ¼ 7.59 Hz; (e) 5, f5 ¼ 7.76 Hz; and (f) 6, f6 ¼ 8.79 Hz.
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respectively. This decomposition does not consider the effect of intermodal coupling. In contrast, the semi-analytic
approach presented herein includes this effect by assuming that fijðx; yÞ ¼ jiðxÞhijðyÞ. Additionally, Zhu and Law [13] only
considered two orders of torsional modes. In contrast, in Table 2 torsional modes of orders three and four appear before
certain flexural and torsional modes of the first and second orders. Figs. 2 and 3 show the first six mode shapes of the
bridge deck obtained by the proposed approach and ANSYS software, respectively. Excellent agreement between the mode
shapes is seen.
4. Conclusion

In this paper, a new semi-analytical approach is described to determine natural frequencies and mode shapes of a multi-
span, orthotropic, roadway bridge deck. This approach treats the function defining the mode shapes of the bridge deck as
being the product of two admissible functions. One defines the longitudinal mode shapes of the bridge deck as being the
mode shapes of a continuous simply supported beam. The other defines the mode shapes of a free beam with boundary
conditions of a free plate, to incorporate the effect of intermodal coupling, which is usually neglected because of the further
complexity. This decomposition leads to a differential equation with only space coordinates, which is highly complex. To
solve this, an average meaning integration is introduced. The obtained results show agreement within 2 percent of
previously published results, with the advantage of a vastly simplified implementation
Appendix A. Mode shapes of a three-span, simply supported beam

To determine the natural mode shapes of a three-span, continuous, simply supported beam (Fig. A1), it is necessary to
determine the natural mode shapes for each span, while taking into account the boundary conditions and the continuity
conditions at the intermediate supports. Assuming that the flexural rigidity of the beam is the same for all spans; the
expression of ith mode shape for the transverse vibration in the rth span is [26] as reflected in

jriðxrÞ ¼ Ari sin kixr þ Bri cos kixr þ Crishkixr þ Drichkixr ; r ¼ 1;2;3 (A.1)

where Ari, Bri, Cri and Dri, are determined by the application of the boundary conditions and the continuity conditions at the
intermediate supports 1 and 2, ki is the eigenvalue of the ith mode shape of three-span beam vibration.

The boundary conditions are as follows: the vertical deflection is equal to zero at all supports, and the bending moments
are equal to zero at the ends, i.e.

jrðxrÞjxr¼0 ¼ jrðxrÞjxr¼lr ¼ 0; r ¼ 1;2;3

q2j1

qx2
1

�����
x1¼0

¼
q2j3

qx2
3

�����
x3¼0

¼ 0 (A.2)

The slope and bending moments at the intermediate supports are continuity conditions:

qj1

qx1

����
x1¼l1

¼
qj2

qx2

����
x2¼0

;
q2j1

qx2
1

�����
x1¼l1

¼
q2j2

qx2
2

�����
x2¼0

qj2

qx2

����
x2¼l2

¼ �
qj3

qx3

����
x3¼l3

;
q2j2

qx2
2

�����
x2¼l2

¼
q2j3

qx2
3

�����
x3¼l3

(A.3)

Thus, there are 12 boundary conditions for a three-span beam. Substituting the boundary and continuity conditions (A.2)
and (A.3) into expression (A.1), after simplifications, one obtains expressions (A.4) for mode shapes of a continuous,
l

x
x1 x2  x3

o

l1 l2  l3
 1 2

�1 (x1) �2 (x2) �3 (x3)

Fig. A1. Continuous three-span simply supported beam.
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three-span simply supported beam:

jiðxÞ ¼

A1i sinðkixÞ �
sinðkil1Þ

shðkil1Þ
shðkixÞ

� �
for 0 � x � l1

A2i sinðkiðx� l1ÞÞ �
sinðkil2Þ

shðkil2Þ
shðkiðx� l1ÞÞ

� �
þ B2i cosðkiðx� l1ÞÞ

�
�chðkiðx� l1ÞÞ þ

chðkil2Þ � cosðkil2Þ

shðkil2Þ
shðkiðx� l1ÞÞ

�
for l1 � x � l1 þ l2

A3i sinðkiðl� xÞÞ �
sinðkil3Þ

shðkil3Þ
shðkiðl� xÞÞ

� �
for l1 þ l2 � x � l

8>>>>>>>>>>>>><
>>>>>>>>>>>>>:

(A.4)

with
A1i: normalized values

A2i ¼ A1i
cosðkil1Þ � y1chðkil1Þ �F2 sinðkil1Þ

1� y2

� �

B2i ¼ A1i sinðkil1Þ

A3i ¼ A2i
cosðkil2Þ � y2chðkil2Þ

y3chðkil3Þ � cosðkil3Þ

� �
� A1i

sinðkil1Þ sinðkl2Þ þ sinðkil1Þshðkil2Þ �F2 sinðkil1Þchðkil2Þ

y3chðkil3Þ � cosðkil3Þ

� �

yr ¼
sinðkilrÞ

shðkilrÞ
; r ¼ 1;2;3 F2 ¼

chðkil2Þ � cosðkil2Þ

shðkil2Þ
(A.5)

The frequency equation is given by

chðkil3Þ sinðkil3Þðchðkil2Þ sinðkil1Þ sinðkil2Þshðkil1Þ

þ ðchðkil1Þ sinðkil1Þ sinðkil2Þ � sinðkil1 þ kil2Þshðkil1ÞÞshðkil2ÞÞ

þ ðshðkil1Þð2 sinðkil1Þ sinðkil3Þ � chðkil2Þð2 cosðkil2Þ sinðkil1Þ sinðkil3Þ

þ sinðkil2Þ sinðkil1 þ kil3ÞÞ þ cosðkil1Þ cosðkil3Þ sinðkil2Þshðkil2Þ

þ cosðkil2Þ sinðkil1 þ kil3Þshðkil2ÞÞ

þ chðkil1Þ sinðkil1Þðchðkil2Þ sinðkil2Þ sinðkil3Þ � sinðkil2 þ kil3Þshðkil2ÞÞÞshðkil3Þ ¼ 0 (A.6)
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Fig. A2. Mode shape 1–6 for a continuous, three-span, simply supported beam. Modes: (a) 1, k1 ¼ 0.1178; (b) 2, k2 ¼ 0.1455; (c) 3, k3 ¼ 0.1614; (d) 4,

k4 ¼ 0.2304; (e) 5, k5 ¼ 0.2736; and (f) 6, k6 ¼ 0.2857.
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Mathematica enables determination of the roots ki of the frequency Eq. (A.6) with respect to a beam 78 m long, with three
spans of unequal (lengths l1 ¼ l3 ¼ 24 m, l2 ¼ 30 m) corresponding to the numerical example of the orthotropic, bridge deck
presented in this article. The first six mode shapes of a continuous, three-span simply supported beam are shown in Fig. A2.
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